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H-Bases II: Applications

to Numerical Problems

H. Michael M6ller and Thomas Sauer

Abstract. We show how H-bases can be applied to polynomial interpo-
lation and for the solution of systems of nonlinear equations. We will give
an example of a system of polynomial equations where the H-basis leads
to more stable computations than with the Gr6bner basis.

§1. Introduction

In the preceding paper [12], we introduced the notion of H-bases for poly-
nomial ideals, and showed how to construct H-bases in the numerically most
interesting case of a zero dimensional ideal. In this paper we consider two prob-
lems from Numerical Analysis, namely polynomial interpolation and solving
systems of polynomial equations, and point out how H-bases can be applied
to both. More precisely, in both cases the computation of normal forms with
respect to an ideal plays a crucial role, and with the basic results from [12]
available, H-bases yield a perfect replacement for the Gr6bner bases which are
normally and frequently used to do this job [8]. Finally, we will consider an
example where a properly chosen H-basis leads to a significant stabilization
of the computations in comparison with the use of Gr6bner bases.

§2. Interpolation

A finite set 0 C -I' of linearly independent functionals on H is said to define
an ideal interpolation scheme if its kernel, ker 0 C 11, is an ideal in II. Given
an ideal interpolation scheme 0 and a polynomial f G H, the interpolation
problem consists of finding p E H such that

0(p) = 0(f), i.e., V(p) = 19(f), V E 0. (1)
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So far, we have put no restrictions on p; hence, there are infinitely many
solutions to (1). More precisely, if p is any solution of (1), hence f-p E ker E,
then the set of all solutions is the equivalence class

[p] = p + ker E) = f + ker E [f].

We denote the linear space of all equivalence classes by I/ ker E, and remark
that (dim 1/ ker 9) = #E. Of course, in order to compute interpolation poly-
nomials, we must find a way to choose a specific element from the equivalence
class [f]. A "natural" choice is to take the normal form NF (f, R), where R-
is an H-basis for ker 9. Since [f] = [g] implies that f - g E (7H), and since
NF (., 71) is a linear operator, we have that

[f] = [g] = NF (f, 7-) = NF (g,7-) + NF (f - g, R) = NF (g, H).

-0

Hence, NF ([f], 7-) = NF (f, H), that is, the normal form is the same for any
element of the same equivalence class. This algebraic approach also allows
for interpolation of functionals which are only given implicitly, that is, by an
ideal _" C 11: compute an H-basis R for . and the interpolation operator is the
"remainder of division" NF (., 7-t). It is worthwhile to remark that one of the
oldest papers on multivariate interpolation, namely [6], starts with implicitly
given interpolation nodes.

Another approach is to look for a polynomial space P C HI which allows
for unique interpolation with respect to 9; to restrict the number of solutions
to this problem, one usually demands the interpolation operator Lp : H --+ P
to be degree reducing [3], that is,

deg Lpf < deg f, f E l.

Such an interpolation space with a degree reducing interpolation operator
is called a minimal degree interpolation space. The most prominent minimal
degree interpolation spaces is the least interpolation space introduced by de
Boor et al in [2], and is the unique degree reducing interpolation space which
satisfies the additional condition

7= f kerq(D), q(D) :=q ......
qEker E

On the other hand, it is obvious that the operator NF (., R) is degree reducing,
linear and interpolating, hence all the spaces P = NF (H, H), for any H-
basis W, are minimal degree interpolation spaces with interpolation operator
Lp = NF (., 7-). Moreover, it is even possible to recover known minimal degree
interpolation spaces by this algebraic process.

Theorem 1. [15] The least interpolation space is given as NF (H, R-), where
R-t is an orthogonal H-basis with respect to the inner-product

(p, q) = (p(D) q) (0), p, q C H.
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§3. Polynomial System Solving

Probably the best-known and most frequent use of Gr6bner bases is for solv-
ing polynomial systems of equations, where they form a core part of literally
all available computer algebra systems. These systems of equations arise natu-
rally in a geometric context, such as finding solutions of geometric constraints
(for example, any Euclidean distance constraint yields a quadratic equation)
or "simply" computing the intersection of algebraic curves/surfaces given in
implicit form. So, given any finite set F E II one wants to find the associated
algebraic variety X E RK (some algebraic closure of our underlying field 1K)
such that

7(X) = 0, (2)

that is,
f(x) = 0, x E X, f E.F.

Note that the emphasis here is not on finding one solution (which could, at
least in the case that #F = n, be done by a Newton method), but on finding
all solutions and obtaining structural information about the variety. It is easy
to see that the variety is not a property of the specific set F, but of the ideal
(T):

F(X) = 0 (= F ( x) = 0.

Therefore, it may be helpful to find particular bases for (F) which allow for
an efficient solution of (2). The "classical" implementation in most Computer
Algebra systems relies on the computation of elimination ideals, which means
the computation of a basis for the subideals

(V)k = (97) n IK[xl,..., xk], k = 1,..., n,

where (V)n = (F7). In fact, this corresponds to transforming the original
problem .7(X) = 0 into a triangular system

g1( x1 0,
g2( X 1, X2 0 = 0,• (3)

gin( X1, X2) ... ,I X" - 0 .

Once such a triangular system is available, the solution strategy is obvious:
determine the zeros of the univariate polynomial g, (xi) and substitute them
into g2 (.', x2) which is now, for for any such zero, again a univariate polynomial
in X2, and go on with this procedure. Moreover, such a triangular basis can
indeed be computed: gix, the reduced Gr6bner basis for (.F) with respect to
the lexicographical term order where xi -< x 2 -< "" -< x. has the property
that

gk = g n K [xl,..., Xk] c ('F)k

is a Gr~bner basis for (F)k (cf. [4, p. 114]).
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However, as nice as this idea of successive elimination of variables sounds,
there are numerous drawbacks:

(i) The complexity of computing a lexicographical Grdbner basis is tremen-
dous, and even relatively "simple" problems still exceed the limitations
of existing computing facilities.

(ii) There are often several polynomials in a certain number of variables, that

is, the system is not as triangular as one would want it to be.

(iii) The degree of the polynomial gi is usually very high. This makes it
impossible to compute its zeros exactly.

(iv) The tempting idea to find gl's zeros approximately and substitute these
values will not lead very far since it is well-known that the zeros of a
polynomial are usually quite ill-conditioned with respect to its coefficients
(cf. [5,17]).

So, the summary is fairly disappointing: elimination methods do not provide
a good tool to tackle polynomial systems of equations. In particular, they rely

too much on symbolic methods (with exact computations) to become a useful
tool in numerical applications.

A different approach has been proposed quite recently by Stetter [16] (see
also [10]; in [7] this method is partly attributed to Stickelberger) which is based
on transforming the nonlinear system of equations into an eigenvalue problem
for which a huge library of powerful routines is available. For that purpose,
let us assume that the set of solutions X is finite (that is, the associated ideal
(.F) is zero dimensional) and that all the common zeros are simple. The latter
restriction is made to keep the presentation simple; details on how to handle
multiplicities can be found in [10]. We first note that for any f e H, the
mapping

n/(/7))
S[p] [, [f.,p]

is a homomorphism on the #X-dimensional linear space H1/ (.F). Now, sup-

pose for a moment that we know X. Then there are polynomials p,, C H,
x E X, defined by

pX (W') = 6X,,, x,x' C X,

which form a basis for H/ (.F), i.e.,

II/((.) = span { [ps]: x ] X }.

Obviously, for any x E X, the polynomial gx = (f - f(x))px satisfies g,(X) =

0, and therefore

[0] = [g,] = [(f - f(x))pX ] = (b1 [pX] - f(x) [pr].

What we have proved with this simple argument is the following crucial the-
orem.
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Theorem 2. The polynomials px, x E X, are joint eigenvectors of all homo-
morphisms 4I, f E 1, with respect to the eigenvalue f(x).

This result again suggests a strategy to solve polynomial systems of equa-
tions: compute a set of representers for H/ (T), that is, a finite set P C H of
linearly independent polynomials such that

H/ (F) = span { [p] : p e P },

and compute the matrix Mf which describes the action of (If with respect to
the basis P. The eigenvalues of such matrices yield, when combined appro-
priately, the solutions X. We remark that the (transpose of the) matrix Mf
is called the multiplication table for f with respect to P', and that the original
goal for Buchberger's doctoral thesis (supervised by Gr~bner) was not the
invention of Gr6bner bases but the computation of multiplication tables. Of
course, the most natural approach would be to compute the multiplication
tables Mrj, j = 1,...,n, for the coordinate functions and thus compute the
respective coordinates of the elements of X as the eigenvalues of the multipli-
cation table. Note that the different components are finally "glued together"
by the requirement that they must correspond to the same eigenvector.

What we now have is the possibility of reducing the search for the solu-
tions of a polynomial system of equations to an eigenvalue problem, provided
that we are able to perform two operations:

(i) Given a basis .F for an ideal (.F) compute a basis P of representers for
H/ (T).

(ii) Having this basis available and given any f E H, compute the multipli-
cation table Mf with respect to P.

Fortunately, this is where [12] enters - the answer are normal forms: if 'H is
an H-basis for (T), then any basis for NF (H, H) is exactly the desired 7P, and
the action of If can be computed by expanding NF (f -p, 7-) for all p E 7P,
which yields the multiplication table Mf. The remaining question is "why H-
bases?", and this question is justified since the computation of normal forms
and thus of multiplication tables is perfectly possible with the help of Gr6bner
bases as well. To give a partial answer to this question, we look at an example.

§4. When Two Ellipses Meet

In this section we consider a simple example which will show that also the
eigenvalue method can encounter serious obstacles, in particular when Grdbner
bases are involved. The important thing here is simplicity, as it will not be
too surprising if extremely complicated and difficult examples cause problems.

We consider the two ellipses

f(xy) = 1 22
f = + y- 1,

g (x, y) = 2x2 + y -1
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Fig. 1. The two ellipses.

Clearly, these two ellipses intersect in the four well-separated points (±1, ±1)
as can be seen in Fig. 1.

Now, we are going to perturb g a little bit and replace it by go =

g (A¢(x, y)), where A, denotes the rotation

Ao,(xy) Cos0 sin [
-sin¢0 cos¢J y "

Note that we have in mind small values of 0, so the intersections should still
be close to (±1, ±1) and the problem should still be well-conditioned.

Recalling that lexicographic Gr6bner bases are known as troublemakers,
we first try some "better" Gr~bner basis, namely the one which is based on
the graded lexicographic term order with x -< y. Note that this ideal basis is
not only a Gr6bner basis, but also an H-basis. In this case the Gr6bner bases
go consists, for ¢ 5 0, of the three polynomials

4 sin 0 xy + 3 cos 0 x 2 - 3 cos

x2 + 2y 2 - 3,

cos (cos2 ±+8) x3 -3cos (cos2 ¢+2) x+12 sin (sin 2 - 1) y,

while

o= {x 2
- 1,y 2 

- 1}
Here we already observe that some singularity must appear for ¢ = 0, since

go is not just a limit 0 -* 0 of go, although the basis changes continuously
with respect to 0. The singularity becomes more apparent if we look at the
normal forms, which are

o {1,x,y,x2} if0540,
7¢={{ 1,x,y,xy} if0=0.
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Finally, the multiplication tables Mx,¢ for the multiplication by x take the
form

[0 1 001
MX,o = 0 00

0 0 01

while the multiplication table

[0 0 3cos0

1 0 0 3 cos' -+8

MX, 1 si 0¢~t 0oq 0 0

4sine____ 
8

provides us with difficulties. Not only does this matrix not converge to M•,o
for 0 -+ 0, but some entries in this matrix even diverge to ±oo, respectively.
Indeed, if one tries to compute the eigenvalues and eigenvectors of this matrix
for small values of 0, things become disastrous: A Maple computation with
10 digits worked until about 0 _ 10-5, where an error message reported that
the QR algorithm did not work. For smaller values, like ' - 10-6, Maple
invented complex zeros with an imaginary part of the magnitude 0.5 x 10-5

which by far exceeds any negligible machine number. On the other hand,
Octave, a free Matlab clone whose Linear Algebra facilities are based on
LAPACK [1], reproduced the eigenvalues correctly, but gave eigenvectors which
were practically 0.

Hence, we end up with some kind of paradox which is due to a singularity
at ' = 0: though the original problem of solving the polynomial system of
equations is very well-conditioned, the graded lexicographical Gr6bner basis
is extremely sensitive to very small perturbations (1I1 • 10-5), but by far not
so sensitive to relatively "large" (11 > 10-5) perturbations.

Similar problems appear when we replace the graded lexicographical
Gr6bner basis by a purely lexicographical one with x -< y which yields the
normal forms

P0 f 1{1, x, x 2 ,x 3} if€000,
{1,x,y, xy} if0 = 0.

Though the components of the multiplication table Mx,o at least are contin-
uous functions in ' and remain bounded in this case, the limit ' --+ 0 again is
not Mý, 0 . But the multiplication tables My,0 with respect to the purely lexi-
cographical Gr6bner basis is even worse: its entries are either zero or diverge
for ' --+ 0.

The behavior of the Grdbner bases at '- = 0 raises the question of whether
this singularity is systematic, that is, intrinsic to the problem, or if it is a repre-
sentation singularity generated by the Gr6bner bases. Systematic singularities
appear, for example, if several zeros "collapse" into one multiple zero which
leads to extremely intricate problems in the multivariate case [9]. Here, how-
ever, the good separation of the zeros suggests the conjecture that we only
face a representation singularity.
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Indeed, since H-bases leave more degrees of freedom, we can try another
one which is now based on orthogonalization. For this purpose, we use the
inner-product

(p, q) = (p(D) q) (0)

and recall from [11, Theorem 5.3] that the set {f, go} is already an H-basis.
Moreover, the normal form space, which is, according to Theorem 1, the least
interpolation space, is spanned by

P; = {1,x,y,2sin¢ x2 - 3cos¢ xy- sine y 2}

and depends continuously on q with

limp; = P0 {1, x, y,xy}.¢00

Then one can compute the respective multiplication table as

[0 1 + E10) 62(05) -3(0)1

M*, = 0 0 1 +E5(0) '

0 6(0) 1 + 67(0) E8(0) I

where ej (.), j = 1,..., 8, are continuous functions which vanish at the origin.
In particular, Mx, - Mx,o as x -- 0 and the computation of eigenvalues
and eigenvectors of M*,, can now be done with sufficient accuracy. However,
we remark that the fact that the matrices M*,¢ and My, have two approxi-
mately double eigenvalues ±1, requires some extra care when connecting these
individual values in the final determination of the intersections.

§5. Summary

We have given examples of numerical applications which can be reduced to
the computation of normal forms with respect to a certain polynomial ideal,
an operation which is usually performed using a Gr6bner basis. On the other
hand, H-bases could as well be used for normal form computations, and their
greater flexibility may yield stabilizing effects which are highly desired in nu-
merical computations.
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